<tbody id="6nmct"></tbody><tbody id="6nmct"></tbody>

<progress id="6nmct"><bdo id="6nmct"><dfn id="6nmct"></dfn></bdo></progress>
  • <samp id="6nmct"><ins id="6nmct"><ruby id="6nmct"></ruby></ins></samp>

  • <samp id="6nmct"></samp>
    1. <progress id="6nmct"><bdo id="6nmct"></bdo></progress>

      起重學院
      下載手機APP
      當前位置: 首頁 ? 起重學院 ? 技術園地 ? 正文

      鉸接單梁橋式起重機

      來源:中國起重機械網
      |
      |
      |
           摘要:本專利提供了一種生產更為簡便、工藝簡單、自重輕的主梁截面;將單梁橋式起重機主、橫梁的剛性連接在其一端,用鉸接連接,解決了因制造和軌道安裝誤差造成大車運行3條腿問題,提高了運行性能;并用可調大車運行水平輪中心距的設計,不用帶輪緣的大車輪,提高了大車輪的使用壽命。
       
          關鍵詞:主梁截面;鉸接;水平輪
       
          作者在1995年5月26日申請的《鉸接單梁橋式起重機》實用新型專利,專利號:ZL95212892.6。為了讓知識共享,現將專利的內容公開,為我國輕小型起重機行業的發展做點貢獻。
       
          本專利共有3個內容:新型主梁截面;主橫梁鉸接結構;大車運行機構的可調中心距的水平輪設計。
       
          1 新型主梁截面
       
          目前生產的LD單梁橋式起重機和LX單梁懸掛起重機的主梁截面如圖1(a)所示。LD和LX的主梁是由鋼板冷壓成形的“”字結構,并用兩塊斜腹板F′E′與工字鋼焊接的主梁截面。斜腹板也需要冷壓彎邊,改善焊接條件和保證焊接質量。它共有4條主焊縫連接。電動葫蘆門式起重機的主梁截面如圖1(b)所示。它是由一塊蓋板B″B″、兩塊斜腹板B″C″與工字鋼上腿焊成的主梁截面。它也有4條主焊縫連接。除以上兩種實腹截面外,還有圓管與工字鋼焊接的截面、焊接的組合工字鋼截面、4塊鋼板焊接的矩形截面等實腹截面及桁架結構主梁。實用新型專利《鉸接單梁橋式起重機》提供的是圖1(c)截面。它是由一塊鋼板冷壓成上“人”字形與工字鋼上腿焊接的截面,它只有兩條主焊縫。現比較圖1中3種截面的優劣。
       
          圖1 主梁截面圖
       
          a.圖1(a)截面,工字鋼的上腿C′C′對截面的慣性矩I、抗彎模量W及對水平形心軸而言增加值較小,沒有充分發揮它的承載能力。也就是說,由于上腿C′C′截面很接近整個截面的水平形心軸xx,它對截面的慣性矩和抗彎模量增加值較小,因此,截面的最大垂直方向的正應力和靜剛度的下撓值比圖1(b)、(c)要大。圖1(b)、(c)截面的上腿距水平形心軸較遠,增大了截面的垂直抗彎能力,提高了主梁的強度和剛度。
       
          b.圖1(a)、(b)均有4條主焊縫,而圖1(c)截面僅有2條主焊縫,沒有集中載荷作用在腹板上的梁翼緣焊縫主要受剪應力作用,翼緣焊縫剪應力計算公式τ=QSx/2Ixhf≤[τh],其中Q為截面內力(剪力),Sx為截面靜矩,hf為計算點的剪應力距中心形心軸的高度。F′F′和B″B″的焊縫剪應力要比CC焊縫剪應力值大。2條主焊縫比4條焊縫工時減少一半。斜腹板兩邊與工字鋼腰在E′E′焊接,有損材質。
       
          c.圖1(a)截面在E′E′的焊接,是在工字鋼腰上同一位置,相當于十字焊縫。在疲勞強度計算時,考慮應力集中情況等級,水平載荷作用時為K4級。而C″C″和CC焊縫應力集中情況等級為K2。所以E′E′焊縫降低了抗疲勞的能力。
       
          d.按Ⅱ類載荷組合校核主梁危險截面的靜強度時,圖1(a)、(b)截面,垂直載荷和水平載荷產生的正應力在B′點和B″點最大,是垂直正應力σ⊥和水平正應力σ-的最大壓應力之和σB′max和σB″max。而圖1(c)則不同。垂直載荷在A點產生最大正應力σA⊥,而在B點的正應力并不是最大值,它等于σB⊥=σA⊥h2/h1。水平載荷產生的正應力在A點等于零,在B點正應力最大,σBmax=σB⊥+σ-,該截面對靜強度校核有利。
       
          e.在主梁截面翼緣板的局部進行穩定性校核時,對圖1(a)、(b)截面應取寬度B′B′和B″B″。而圖1(c)截面取寬度AB,比以上兩種截面寬度要小,同時比上翼緣板的局部穩結構設計、CAD/VM研究。定性應力值要小,不象圖1(b)截面需要加縱向加強筋,或是增加翼緣板厚度δ,或是減小橫向加勁板間距a。
       
          f.用一塊平鋼板冷壓成上“人”字形截面,可省去3塊鋼板、可減少兩種冷壓成形過程、可少焊兩條主焊縫(詳見圖1(a)),這樣既省料,省工,又降低了成本。
       
          本專利的圖1(c)截面的成形有兩種方法:用壓力機先將鋼板冷壓成“∏”,然后再用一套模具,將“∏”字結構再冷壓成上“人”字形;另一種方法是用復合模具一次冷壓成上“人”字形截面,然后根據局部穩定性條件,焊接橫向加勁板,按照跨度大小,將主梁對接成需要的長度,最后與工字鋼的上腿焊接。
       
          現在生產的LD和LX的主梁鋼板厚度是5mm和6mm,最大寬度是1.6m。按GB709—88規定,5mm厚鋼板寬度最大1.8m;6mm厚度鋼板寬度最大2.0m。生產圖1(c)截面的主梁,周邊長度之和超過鋼板寬度時,要兩側對稱各對接一塊鋼板。
       
          如果將圖1中3種主梁截面的截面積取為相等,然后求出截面各部位尺寸,將截面幾何性質和性能作一比較,就可以充分說明實用新型專利《鉸接單梁橋式起重機》主梁的優越性了。以LD單梁橋式起重機起重量5t、跨度22.5m的主梁截面為依據,分別求得圖1(b)、(c)的截面尺寸,在載荷、速度和各載荷系數等條件均相同的情況下,比較3種截面的靜強度、靜剛度、局部穩定性和A6工作級別的疲勞強度的計算結果,并表示在表1和表2中,其中圖1(c)截面正應力較小,而且翼緣板局部穩定性應力也合格,不需要象圖1(b)截面增加縱向加強筋板。
       
          門式起重機上翼緣板的最大壓縮應力σBmax=-91.07MPa,它不滿足σBmax≤〔σcr〕,所以,上翼緣板應當焊接縱向加強筋板或增加板厚δ。
       
          此處要說明兩點。首先是假定3種截面積相等,它們的動態剛度——主梁的滿載自振頻率不進行比較。因為主梁在跨中換算集中質量與電動葫蘆質量之和相等,而主梁跨中的剛度系數Ks相差很小,分別為Ksa=27.106kN/cm;Ksb=29.212kN/cm;Ksc=28.866kN/cm。其次,3種截面實腹梁的總體穩定性,當時,也可以不必驗算整體穩定性,ba=440mm,bb=606mm,bc=602mm,3種截面的整體穩定性也不作比較。
       
          如果將圖1(c)截面主梁高度取為圖1(a)截面的高度H=1100mm,計算結果也表示在表1中,最大正應力仍比圖1(a)截面小,此時主梁自重圖1(c)截面將比圖1(a)截面減輕6.14%。
       
          以上專利推薦的圖1(c)截面主梁,不僅省工,省料,工藝簡單,成本低,而且結構更為合理。
       
          2 主橫梁鉸接結構
       
          LD單梁橋式起重機的主、橫梁剛性連接見圖2,其中一塊鋼板與橫梁焊接在一起,帶平面止口的鋼板與主梁焊接在一起。主、橫梁連接以平面止口定位,用6個或8個螺栓和螺母連接,它是典型的模塊化設計。其優點是減小了生產占地,主、橫梁可以單獨生產,按合同組裝。但是,主梁兩端的平面止口相對扭轉角為1°時,對車輪軸距為2m,2.5m和3m的3種橫梁安裝的車輪,當3個車輪踏面在一個平面上時,另一個車輪踏面將分別高出該平面34.9mm,43.63mm和52.36mm。出現3條腿現象不僅加快車輪輪緣磨損,而且會發生輪緣爬軌和車輪脫軌事故。當分別驅動的大車運行機構一旦發生主動車輪抬起、單邊驅動時,驅動力與運行阻力總會構成力偶,產生側壓力及附加阻力,造成驅動電機負載過大,使運行速度減慢或運行不了。當然,造成平面止口相對誤差不見得是因為扭轉角為1°。造成3條腿的原因有:主梁軸線的扭轉變形使兩端面水平止口不在同一平面上;橫梁車輪軸孔加工位置誤差和橫梁的焊接變形;車輪直徑加工誤差;軌道安裝誤差等。
       
          圖2 主、橫梁連接圖
       
          實用新型專利《鉸接單梁橋式起重機》的主、橫梁連接,其一端仍保留圖2的剛性連接,而另一端用圖3的鉸接結構。它是將帶平面止口的鋼板,先焊上一根圓軸,加工軸徑和平面后再與主梁焊接。為了限制鉸接橫梁水平面的擺動,可控制軸孔配合和保持原連接板的寬度560mm和600mm。為了限制鉸接橫梁垂直平面的擺動,也可以保留水平止口,但是要使主梁水平止口平面高出橫梁水平止口一個δ值,δ值就限制了橫梁垂直面的擺動角度。鉸接結構徹底地解決了3條腿現象。
       
          圖3 主、橫梁鉸接結構
       
          作者設計的鉸接軸是一根空心軸。孔的一端用鋼板焊接封閉,軸端開槽用軸端定位板固定。軸的設計是按最大剪力校核剪切應力τ,承壓面的擠壓應力σcd應小于各自的許用應力。
       
          3 水平輪設計
       
          車輪輪緣與軌道的摩擦是一種無法避免的現象,一旦輪緣與軌道劇烈摩擦發生啃道現象時,便加快了輪緣的磨損和車輪的報廢,也使軌道磨損嚴重。由于輪緣磨損報廢的車輪比車輪踏面磨損報廢的車輪多,為改變這一現象,用無輪緣車輪代替輪緣車輪,用水平輪導向運行,將輪緣與軌道的滑動摩擦改為水平輪的滾動摩擦,附加阻力系數由β=1.5降低到β=1.1,從而減小了運行阻力,提高了車輪壽命。
       
          帶輪緣的槽形車輪,為滿足不同軌面寬度b的軌道,車輪施工圖上給出了適合不同軌面寬度b的槽寬B的加工尺寸,一般間隙δ=B-b=30mm,用戶訂貨時,必須在合同上注明軌道型號或軌面寬度b,使出廠的產品即安裝的車輪符合用戶軌道要求。
       
          圖4是大車輪與水平輪的簡圖。用水平輪導向運行,為適合不同軌面寬度b的要求,水平輪中心距L一定要求可調。作者是用水平輪安裝在偏心軸上的方法獲得水平輪中心距L的變化。偏心距e用下式計算:
       
          式中:Bmax=bmax+δ,為水平輪間最大寬度(mm);Bmin=bmin+δ,為水平輪間最小寬度(mm)。
       
          圖4 大車車輪和水平輪
       
          作者設計的水平輪軸偏心距e=5mm,B=70~90mm。應用可調中心距水平輪,用戶不必提供軌面寬度b,只要根據b按說明書上標明的水平輪偏心軸的偏心中心孔的位置安裝,就可滿足使用要求。這種方法也可以用在橋式起重機上,一旦bmax和bmin相差太大,可以分兩段設計。
       
          水平輪設計的計算載荷Ps和滾動軸承校核的計算載荷按《起重機設計規范》GB3811—83附錄E計算。
       
          水平輪安裝在稍加改進的橫梁蓋板裝置上,蓋板裝置原有的螺栓連接尺寸不變。
       
          本專利3個獨立的設計內容,可以供生產廠家任意選用其中一個或全部設計用在單梁橋式起重機上,這必將使整機的性能有所提高。
      ?

      移動版:鉸接單梁橋式起重機

      九九视频免费在线观看